Buscar


Caja PDF - Motor de búsqueda PDF
Última actualización de la base de datos: 06 Abril a las 13:45 - Alrededor de 6000 documentos indexados.

Buscar en caja-pdf.es Todos los sitios
Mostrar número de elementos por página

Resultados para «mecanico»:


Total: 300 resultados - 0.026 segundos

5- Mecánica de fluidos 100%

Daniel Valenzuela Lillo Curso de Biofísica Universidad Autónoma Escuela de Fonoaudiología Mecánica de fluidos Mecánica de Fluidos Estudia el comportamiento mecánico de los fluidos En reposo En movimiento Estática de fluidos Dinámica de fluidos Mecánica de fluidos Sólidos •Forma y volumen definido.

https://www.caja-pdf.es/2020/03/14/5--mecanica-de-fluidos/

14/03/2020 www.caja-pdf.es

Lectura Obligatoria 4 (ES) 89%

“Equ uilibrio o de F Fuerzaas”  Equilibrio o estático Es u una situación estacionaria en la que se  cumplen unaa de estas doss condicioness:  (1) Un sistema esttá en equilibrio mecánico ccuando la sum ma de fuerzass y momento os, sobre cadaa  partícula del sistema es cero.  o de configurración es un p punto  (2) Un sistema esttá en equilibrio mecánico ssi su posiciónn en el espacio ente de energgía potencial es cero.  en el que el gradie        Se distingue un tip po particular de equilibrio mecánico lla mado equilib brio estático q que correspondería  a unaa situación en n que el cuerp po está en rep poso, con vel ocidad cero: una hoja de p papel sobre u un  escrittorio estará e en equilibrio m mecánico y esstático, un paaracaidista caayendo a velo ocidad constante,  dada por la velocidad estaría en equilibrio m mecánico per o no estático o.    DICIONES DE EQUILIBRIO: Esta condició ón de equilibrrio implica qu ue una fuerza aislada aplicada  COND sobre e un cuerpo n no puede producir por sí so ola equilibrioo y que, en un n cuerpo en equilibrio, cada  fuerzza es igual y o opuesta a la re esultante de ttodas las dem más. Así, dos ffuerzas igualees y opuestass,  actuaando sobre laa misma línea de acción, sí producen eqquilibrio. El eq quilibrio pued de ser de tress  clase es: estable, ine estable e indiiferente. Si un n cuerpo estáá suspendido,, el equilibrio será estable si el  centrro de gravedaad está por de ebajo del pun nto de suspennsión; inestab ble si está porr encima, e  indife erente si coin nciden amboss puntos. Si un n cuerpo estáá apoyado, el equilibrio será estable cuando  la verrtical que passa por el centro de gravedaad caiga denttro de su basee de sustentaación; inestab ble  cuando pase por e el límite de diicha base, e in ndiferente cuuando la basee de sustentacción sea tal que la  o de gravedad d pase siemprre por ella.   verticcal del centro   Estab bilidad del equilibrio de rottación. Ocurrre cuando un  cuerpo o sisttema no gira con respecto a  algún n punto, aunq que exista unaa tendencia.

https://www.caja-pdf.es/2013/10/27/lectura-obligatoria-4-es/

27/10/2013 www.caja-pdf.es

Temas y Equipos AK01 (BERTHANA) 88%

Temas y Equipos Grupo AK01 Coord.

https://www.caja-pdf.es/2013/09/30/temas-y-equipos-ak01-berthana/

30/09/2013 www.caja-pdf.es

Temas y Equipos AK02 (ROBERTO) 88%

Temas y Equipos Grupo AK02 Coord.

https://www.caja-pdf.es/2013/09/30/temas-y-equipos-ak02-roberto/

30/09/2013 www.caja-pdf.es

Cerradura digital BioLock 5000 88%

Esta solución incluye el lector de huellas digitales y el sistema mecánico de cierre de la puerta incorporado “all in one”, lo cual lo hace muy cómodo y sencillo.

https://www.caja-pdf.es/2014/05/11/cerradura-digital-biolock-5000/

11/05/2014 www.caja-pdf.es

Lectura Obligatoria 5 (DIN) 88%

“Maquinas Simples”     Rueda La rueda es un operador formado por un cuerpo redondo que gira respecto de un punto  fijo denominado eje de giro. Normalmente la rueda siempre tiene que ir acompañada de un eje  cilíndrico (que guía su movimiento giratorio) y de un soporte (que mantiene al eje en su  posición). Aunque en la naturaleza también existen cuerpos redondeados (troncos de árbol,  cantos rodados, huevos...), ninguno de ellos cumple la función de la rueda en las máquinas, por  tanto se puede considerar que esta es una máquina totalmente artificial.  La parte operativa de la rueda es la periferia del disco, que se recubre con materiales o  terminaciones de diversos tipos con el fin de adaptarla a la utilidad correspondiente. Algunas de  las ruedas más empleadas son:  ‐ Rueda dentada, Rueda de transporte, Polea, Turbinas (rueda de palas).    Mecanismo de biela – manivela: Una manivela es una palanca que nos permite hacer girar  manualmente un dispositivo mecánico. Si le acoplamos una barra que pueda girar libremente en  sus dos extremos: la biela, obtenemos un mecanismo biela‐manivela. Este mecanismo permite  transformar el movimiento circular de la manivela en movimiento rectilíneo alternativo (la biela).  También funciona a la inversa: aplicando un movimiento rectilíneo alternativo a la biela podemos  conseguir que la manivela gire.    Cuña: La cuña es un prisma de base triangular, hecho de materia resistente que sirve para  introducirse en el interior de los cuerpos y cortarlos.  Es un instrumento muy generalizado:  cuchillos, navajas, hojas, tijeras se basan en la cuña. La ventaja mecánica (definida como la razón  entre la fuerza resistente y la fuerza aplicada) que aporta una cuña es directamente proporcional  a la longitud de la pendiente e inversamente proporcional a su ancho.    Palanca: Básicamente está constituida por una barra rígida, un punto de apoyo (se le puede  llamar “fulcro”) y dos fuerzas (mínimo) presentes: una fuerza (o resistencia) a la que hay que  vencer (normalmente es un peso a sostener o a levantar o a mover en general) y la fuerza (o  potencia) que se aplica para realizar la acción que se menciona. La distancia que hay entre el  punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo.  Así, a cada fuerza le corresponde un cierto brazo. Como en casi todos los casos de máquinas  simples, con la palanca se trata de vencer una resistencia, situada en un extremo de la barra,  aplicando una fuerza de valor más pequeño que se denomina potencia, en el otro extremo de la  barra. En una palanca podemos distinguir entonces los siguientes elementos:  ‐ El punto de apoyo o fulcro.  ‐ Potencia: la fuerza que se ha de aplicar.  ‐ Resistencia: el peso que se ha de mover.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2      Tipos de palancas:                        Ley de las palancas:  Desde el punto de vista matemático hay una ley muy importante, que antiguamente era  conocida como la “ley de oro”, nos referimos a la Ley de las Palancas:    El producto de la potencia por su brazo (F2 • b2) es igual al producto de la resistencia por el  brazo suyo (F1 • b1)  lo cual se escribe así:  F1 • b1 = F2 • b2  lo que significa que:  Trabajo motor = Trabajo resistente     Llamando F1 a la fuerza a vencer y F2 a la fuerza a aplicar y recordando que b1 es la distancia  entre el fulcro y la fuerza a vencer y b2 la distancia entre el fulcro y el lugar donde se ha de  aplicar la fuerza F2. En este caso se está considerando que las fuerzas son perpendiculares a los  brazos.    Plano inclinado: El plano inclinado es una superficie plana que forma con otra un ángulo muy  agudo (mucho menor de 90º). En la naturaleza aparece en forma de rampa, pero el ser humano  lo ha adaptado a sus necesidades haciéndolo móvil, como en el caso del hacha o del cuchillo.  Los cuerpos en caída por un plano inclinado sin rozamiento están sometidos a la  atracción de la  Tierra y experimentan un movimiento uniformemente acelerado. Esta aceleración aumenta con  la inclinación del plano. Su valor máximo es igual a la aceleración de la gravedad g = 9’8 m/s2   (Inclinación de 90º)    Polea: Son ruedas que tienen el perímetro exterior diseñado especialmente para facilitar el  contacto con cuerdas o correas. La polea es una máquina simple que nos puede ayudar a subir  pesos  ahorrando esfuerzo. Dependiendo del tipo de la misma: Simple fija, Simple móvil o  compuesta.    Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández     Tuerca husillo (tornillo sin fin): Es un mecanismo que convierte el movimiento de rotación en  movimiento lineal, y un par de torsión (fuerza de rotación) a una fuerza lineal. Es una de las seis  máquinas simples clásicos. La forma más común consiste en un eje cilíndrico como una rosca. El  husillo pasa a través de la tuerca que rosca en el husillo. Cuando el husillo gira avanza en una  proporción del paso de la rosca por vuelta de husillo.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández 

https://www.caja-pdf.es/2013/10/28/lectura-obligatoria-5-din/

28/10/2013 www.caja-pdf.es

Lectura Obligatoria 3 (RES) 88%

“Fuerzas Aplicadas”     Tensión: En física e ingeniería, se denomina tensión mecánica a la fuerza por unidad de área en el  entorno de un punto material sobre una superficie real o imaginaria de un medio continuo. La  definición anterior se aplica tanto a fuerzas localizadas como fuerzas distribuidas, uniformemente o  no, que actúan sobre una superficie. La tensión mecánica se expresa en unidades de presión, es  decir, fuerza dividida entre área. En el Sistema Internacional, la unidad de la tensión mecánica es el  pascal (1 Pa = 1 N/m²). No obstante, en ingeniería también es usual expresar otras unidades como  kg/cm² o kg/mm², donde «kg» se refiere a kilopondio o kilogramo‐fuerza, no a la unidad de masa  kilogramo.    Compresión: En un prisma mecánico el esfuerzo de compresión puede ser simplemente la fuerza  resultante que actúa sobre una determinada sección transversal al eje baricéntrico de dicho prisma,  lo que tiene el efecto de acortar la pieza en la dirección de eje baricéntrico. Las piezas prismáticas  sometidas a un esfuerzo de compresión considerable son susceptibles de experimentar pandeo  flexional, por lo que su correcto dimensionado requiere examinar dicho tipo de no linealidad  geométrica.    Corte: La tensión cortante o tensión de corte es aquella que, fijado un plano, actúa tangente al  mismo. Se suele representar con la letra griega tau. En piezas prismáticas, las tensiones cortantes  aparecen en caso de aplicación de un esfuerzo cortante o bien de un momento torsor.  En piezas alargadas, como vigas y pilares, el plano de referencia suele ser un paralelo a la sección  transversal (i.e., uno perpendicular al eje longitudinal). A diferencia del esfuerzo normal, es más  difícil de apreciar en las vigas ya que su efecto es menos evidente.    Torsión: En ingeniería, torsión es la solicitación que se presenta cuando se aplica un momento sobre  el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en  general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible  encontrarla en situaciones diversas.  La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de  estar contenida en el plano formado inicialmente por las dos curvas. En lugar de eso una curva  paralela al eje se retuerce alrededor de él.  El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección  transversal de una pieza en general se caracteriza por dos fenómenos:  1.‐ Aparecen tensiones tangenciales paralelas a la sección transversal.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2     ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 2.‐ Cu uando las ten nsiones anteriiores no están n distribuidass adecuadamente, cosa qu ue sucede siempre a  meno os que la seccción tenga sim metría circular, aparecen aalabeos seccio onales que haacen que las  secciones transversales deform madas no sean n planas.  os: Se denomina ensayo de e materiales aa toda pruebaa cuyo fin es determinar laas  Ensayyos mecánico propiedades mecáánicas de un m material. Los ensayos de m materiales pu ueden ser de d dos tipos, enssayos  os últimos pe rmiten realizaar la inspección sin perjud dicar el  destrructivos y enssayos no destructivos. Esto poste erior empleo del producto o, por lo que p permiten insppeccionar la totalidad de laa producción si  fueraa necesario.   ‐ Entrre los ensayos no destructtivos más com munes se encuuentran los siiguientes:  Ensayyo de durezass (en algunos casos no se cconsidera com mo ensayo no o destructivo,, especialmen nte  cuand do puede com mprometer laa resistencia d de la pieza a ccargas estáticcas o a fatiga))  Inspe ección visual, microscopía y análisis de aacabado supeerficial  Ensayyos por líquid dos penetranttes  Inspe ección por partículas magn néticas  Ensayyos radiológiccos  Ensayyo por ultraso onidos  Ensayyos por corrie entes inducidas  Ensayyos de fugas: detección accústica, detectores específficos de gasess, cromatógraafos, detecció ón de  flujo, espectromettría de masass, manómetro os, ensayos dee burbujas, etc.  ‐ Entrre los ensayos destructivos más comun nes se encuenntran los siguiientes:  ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐  Ensayyo de tracción  Ensayyo de compre esión  Ensayyo de cizallam miento  Ensayyo de flexión  Ensayyo de torsión  Ensayyo de resilien ncia  Ensayyo de fatiga d de materiales  Ensayyo de fluenciaa en caliente (creep)  Ensayyo de plegado o libre  Otross ensayos parra aplicacione es específicas son:  Ensayyo de plegado o  Ensayyo de embutiición  Ensayyo de abocardado  Prueba hidrostáticca (con presio ones mayoress a las de servvicio).  ón alternativaa de alambres  Flexió   de Hooke: En física, la ley d de elasticidad d de Hooke o  ley de Hookee, originalmen nte formuladaa para  Ley d casoss del estiramiento longitud dinal, establece que el alarrgamiento un nitario que exxperimenta un n  mate erial elástico e es directamen nte proporcio onal a la fuerzza aplicada F:     Lectura OBLLIGATORIA para ell apoyo de física aplicada al Diseño Industrial Septiem mbre de 2013. Proff. D.I. Diemel Hernández       do \delta el alargamiento, L la longitud original, E: m módulo de You ung, A la seccción transverssal de  Siend la pie eza estirada. LLa ley se aplicca a materiale es elásticos h asta un límitee denominado límite elásttico.    Diagrrama de esfue erzo: El diagrama es la currva resultantee graficada co on los valoress del esfuerzo o y la  corre espondiente d deformación unitaria en ell espécimen ccalculado a paartir de los daatos de un en nsayo  de te ensión o de co ompresión.    Lectura OBLLIGATORIA para ell apoyo de física aplicada al Diseño Industrial Septiem mbre de 2013. Proff. D.I. Diemel Hernández 

https://www.caja-pdf.es/2013/10/14/lectura-obligatoria-3-res/

14/10/2013 www.caja-pdf.es

Maquinaria de Construccion - ECO208 87%

Un sistema de mecánico o motriz es una combinación de mecanismos que transforman velocidades, fuerzas, trayectorias o energías, mediante una seria de transformaciones intermedias.

https://www.caja-pdf.es/2014/08/07/maquinaria-de-construccion-eco208/

07/08/2014 www.caja-pdf.es

apoyo dinámica 87%

"Apoyo de Física aplicada al diseño:

https://www.caja-pdf.es/2013/09/23/apoyo-din-mica/

23/09/2013 www.caja-pdf.es

apoyo dinámica 14 i 86%

"Apoyo de Física aplicada al diseño:

https://www.caja-pdf.es/2014/01/13/apoyo-din-mica-14-i-1/

13/01/2014 www.caja-pdf.es

apoyo dinámica 14 i 86%

"Apoyo de Física aplicada al diseño:

https://www.caja-pdf.es/2014/01/13/apoyo-din-mica-14-i/

13/01/2014 www.caja-pdf.es

Lectura Obligatoria 2 (DIN) 85%

“Leyes de Newton”     1era Ley o de la Inercia: Según la PRIMERA LEY DE NEWTON, si no existen fuerzas externas que actúen  sobre un cuerpo, éste permanecerá en reposo o se moverá con una velocidad constante en línea recta.  El movimiento termina cuando fuerzas externas de fricción actúan sobre la superficie del cuerpo hasta  que se detiene. Por esta razón el movimiento de un objeto que resbala por una superficie de hielo dura  más tiempo que por una superficie de cemento, simplemente porque el hielo presenta menor fricción  que el cemento. Galileo expuso que si no existe fricción, el cuerpo continuará moviéndose a velocidad  constante, ya que ninguna fuerza afectará el movimiento. Cuando se presenta un cambio en el  movimiento de un cuerpo, éste presenta un nivel de resistencia denominado INERCIA. Si has ido en un  vehículo que ha frenado de improviso y tú has debido detenerte con tus propias manos, has  experimentado lo que es la inercia. Por tanto, a la primera ley de Newton también se le conoce como ley  de la inercia.    2ª Ley o de Fuerza: Determina que si se aplica una fuerza a un cuerpo, éste se acelera. La aceleración se  produce en la misma dirección que la fuerza aplicada y es inversamente proporcional a la masa del  cuerpo que se mueve. Recuerda que la fuerza y la aceleración son magnitudes vectoriales por lo que  tienen un valor, una dirección y un sentido. Si la masa de los cuerpos es constante, la fórmula que  expresa la segunda ley de Newton es: fuerza = masa x aceleración. En cambio cuando la masa del cuerpo  aumenta, la aceleración disminuye. Entonces, debes establecer la cantidad de movimiento (p) que  equivale al producto de la masa de un cuerpo por su velocidad. Es decir: p = m x v   FUERZA MASA en el  Sistema Internacional la cantidad de movimiento (p) se mide en Kg∙m/s porque la unidad para la masa es  el kilogramo y la unidad para la aceleración es metros por segundo. Por tanto: Fuerza (N) = masa (kg) x  aceleración (m/s2)    3era Ley o de Acción y Reacción: Postula que la fuerza que impulsa un cuerpo genera una fuerza igual  que va en sentido contrario. Es decir, si un cuerpo ejerce fuerza en otro cuerpo, el segundo cuerpo  produce una fuerza sobre el primero con igual magnitud y en dirección contraria. La fuerza siempre se  produce en pares iguales y opuestos. Por esta razón, a la tercera ley de Newton también se le conoce  como ley de acción y reacción.     Diagramas de cuerpo libre: Es una representación gráfica utilizada para analizar las fuerzas que actúan  sobre un cuerpo libre. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que  aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las  fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean  para el análisis de las fuerzas internas que actúan en estructuras. Todas las fuerzas externas se  representan mediante vectores etiquetados de forma adecuada. Las flechas indican la dirección y  magnitud de las fuerzas y, en la medida de lo posible, deberían situarse en el punto en que se aplican.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2     Solo se deben incluir las fuerzas que actúan sobre el objeto, ya sean de rozamiento, gravitatorias,  normales, de arrastre o de contacto. Cuando se trabaja con un sistema de referencia no inercial, es  apropiado incluir fuerzas ficticias como la centrífuga.    Equilibrio estático: Es una situación estacionaria en la que se cumplen una de estas dos condiciones:  (1) Un sistema está en equilibrio mecánico cuando la suma de fuerzas y momentos, sobre cada  partícula del sistema es cero.  (2) Un sistema está en equilibrio mecánico si su posición en el espacio de configuración es un punto  en el que el gradiente de energía potencial es cero.        Se distingue un tipo particular de equilibrio mecánico llamado equilibrio estático que correspondería  a una situación en que el cuerpo está en reposo, con velocidad cero: una hoja de papel sobre un  escritorio estará en equilibrio mecánico y estático, un paracaidista cayendo a velocidad constante,  dada por la velocidad estaría en equilibrio mecánico pero no estático.    CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada  sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada  fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas,  actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres  clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el  centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e  indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando  la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable  cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la  vertical del centro de gravedad pase siempre por ella.     Estabilidad del equilibrio de rotación. Ocurre cuando un cuerpo o sistema no gira con respecto a  algún punto, aunque exista una tendencia.    Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández   

https://www.caja-pdf.es/2013/10/05/lectura-obligatoria-2-din/

05/10/2013 www.caja-pdf.es

Seguridad 84%

Seguridad en sistemas distribuidos 1.

https://www.caja-pdf.es/2011/02/09/seguridad/

09/02/2011 www.caja-pdf.es

Temas y Equipos AH01 (JOSEF) 84%

Temas y Equipos Grupo AH01 Coord.

https://www.caja-pdf.es/2013/09/29/temas-y-equipos-ah01-josef/

29/09/2013 www.caja-pdf.es

Temas y Equipos AH02 (SOTO) 84%

Temas y Equipos Grupo AG02 Coord.

https://www.caja-pdf.es/2013/09/29/temas-y-equipos-ah02-soto/

29/09/2013 www.caja-pdf.es

repaso mecaìnica 84%

Repaso Mecánica Conceptos generales de estática y dinámica.

https://www.caja-pdf.es/2013/10/07/repaso-meca-nica/

07/10/2013 www.caja-pdf.es

Contenidos Tema 4 Sistemas hidráulicos 84%

Circuitos neumáticos y oleohidráulicos:

https://www.caja-pdf.es/2016/04/06/contenidos-tema-4-sistemas-hidr-ulicos/

06/04/2016 www.caja-pdf.es