Caja PDF

Comparta fácilmente sus documentos PDF con sus contactos, la web y las redes sociales.

Compartir un archivo PDF Gestor de archivos Caja de instrumento Buscar PDF Ayuda Contáctenos



2 geometria analitica apuntes.pdf


Vista previa del archivo PDF 2-geometria-analitica-apuntes.pdf

Página 123210

Vista previa de texto


Capítulo 1
El Plano Euclidiano
1.1

La Geometría Griega

En el principio, la geometría era una colección de reglas de uso común para medir
y construir casas y ciudades. Fue hasta el año 300 AC que Euclides de Alejandría,
en sus Elementos, ordena y escribe todo ese saber, imprimiéndole el sello de rigor
lógico que caracteriza y distingue a las matemáticas. Se da cuenta de que todo razonamiento riguroso (o demostración) debe basarse sobre ciertos principios previamente
establecidos ya sea, a su vez, por demostración o bien por convención. Pero a final
de cuentas, este método conduce a la necesidad ineludible de convenir en que ciertos
principios básicos (postulados o axiomas) son válidos sin necesidad de demostrarlos,
que están dados y son incontrovertibles para poder construir sobre ellos el resto de
la teoría. Lo que hoy se conoce como Geometría Euclidiana, y hasta hace dos siglos
simplemente como Geometría, está basada sobre los cinco postulados de Euclides:
I Por cualesquiera dos puntos, se puede trazar el segmento de recta que los une.
II Dados un punto y una distancia, se puede trazar el círculo de centro el punto y
radio la distancia.
III Un segmento de recta, se puede extender en ambas direcciones indefinidamente.
IV Todos los ángulos rectos son iguales.
V Dadas dos rectas y una tercera que las corta, si los ángulos internos de un lado
suman menos de dos ángulos rectos, entonces las dos rectas se cortan y lo hacen
de ese lado.
Obsérvese que en estos postulados se describe el comportamiento y la relación entre
ciertos elementos básicos de la geometría, como son “punto”, “trazar”, “segmento”,
“distancia”, etc. De alguna manera, se le dá la vuelta a su definición haciendo uso de
13