Buscar


Caja PDF - Motor de búsqueda PDF
Última actualización de la base de datos: 22 Septiembre a las 16:42 - Alrededor de 6100 documentos indexados.

Buscar en caja-pdf.es Todos los sitios
Mostrar número de elementos por página

Resultados para «movimiento»:


Total: 300 resultados - 0.07 segundos

Lectura Obligatoria 3(DIN) 100%

Movimiento de un cuerpo”    Rapidez y Velocidad: RAPIDEZ: Un objeto en movimiento recorre una cierta distancia en un  tiempo determinado. Un auto, por ejemplo, recorre un cierto número de kilómetros en una hora.  La rapidez es una medida de que tan aprisa se mueve un objeto. Es la razón de cambio a la que  se recorre la distancia. Recuerda que la expresión razón de cambio indica que estamos  dividiendo alguna cantidad entre el tiempo. La rapidez se mide siempre en términos de una  unidad de distancia divida entre una unidad de tiempo. La rapidez se define como la distancia  recorrida por unidad de tiempo. Aquí la palabra "por" significa "dividido entre".  VELOCIDAD: La velocidad media de un objeto se define como la distancia recorrida por un objeto  dividido por el tiempo transcurrido. La velocidad es una cantidad vectorial y la velocidad media  se puede definir como el desplazamiento dividido por el tiempo.    La propia definición implica que la unidad de velocidad debe ser metros/segundo o en general  cualquier distancia dividido por cualquier tiempo. En el lenguaje cotidiano empleamos las  palabras rapidez y velocidad de manera indistinta. En física hacemos una distinción entre ellas.  De manera muy sencilla, la diferencia es que la velocidad es una rapidez en una dirección  determinada. Cuando decimos que un auto viaja a 60 km/hora estamos indicando su rapidez.  Pero si decimos que un auto se desplaza a 60 km/h hacia el norte estamos especificando su  velocidad. La rapidez describe qué tan aprisa se desplaza un objeto; la velocidad nos dice que tan  aprisa lo hace y en su dirección.    Aceleración: El concepto aceleración, no tiene que ver con ir moviéndose rápido.  Es un concepto  que en muchas ocasiones ha sido mal utilizado en la vida real, sin embargo, su significado en  física es muy diferente.  Es muy común escuchar que se utiliza este concepto para indicar que un  objeto se mueve a gran velocidad lo cual es incorrecto.  El concepto aceleración se refiere al  cambio en la velocidad de un objeto. Siempre que un objeto cambia su velocidad, en términos de  su magnitud o dirección, decimos que está acelerando.    Movimiento uniformemente acelerado: Puede presentarse como de caída libre o de subida o tiro  vertical. El movimiento rectilíneo uniformemente acelerado es un tipo de movimiento frecuente  en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en el vacío  desde lo alto de un edificio son cuerpos que se mueven ganando velocidad con el tiempo de un  modo aproximadamente uniforme; es decir, con una aceleración constante.   Este es el significado del movimiento uniformemente acelerado, el cual “en tiempos iguales,  adquiere iguales incrementos de rapidez”. En este tipo de movimiento sobre la partícula u objeto  actúa una fuerza que puede ser externa o interna. En este movimiento la velocidad es variable,  nunca permanece constante; lo que sí es constante es la aceleración.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2     Entenderemos como aceleración la variación de la velocidad con respecto al tiempo. Pudiendo  ser este cambio en la magnitud (rapidez), en la dirección o en ambos. Las variables que entran en  juego (con sus respectivas unidades de medida) al estudiar este tipo de movimiento son:    Velocidad inicial           Vo (m/s)  Velocidad final              Vf  (m/s)  Aceleración                     a  (m/s2)  Tiempo                             t   (s)  Distancia                         d  (m)    Caída Libre: El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una  forma de rectilíneo uniformemente acelerado. La distancia recorrida (d) se mide sobre la vertical  y corresponde, por tanto, a una altura que se representa por la letra h. En el vacío el movimiento  de caída es de aceleración constante, siendo dicha aceleración la misma para todos los cuerpos,  independientemente de cuales sean su forma y su peso.   La presencia de aire frena ese movimiento de caída y la aceleración pasa a depender entonces de  la forma del cuerpo. No obstante, para cuerpos aproximadamente esféricos, la influencia del  medio sobre el movimiento puede despreciarse y tratarse, en una primera aproximación, como si  fuera de caída libre.  La aceleración en los movimientos de caída libre, conocida como aceleración de la gravedad, se  representa por la letra g y toma un valor aproximado de 9,81 m/s2  (algunos usan solo el valor  9,8 o redondean en 10).   Si el movimiento considerado es de descenso o de caída, el valor de g resulta positivo como  corresponde a una auténtica aceleración. Si, por el contrario, es de ascenso en vertical el valor de  g se considera negativo, pues se trata, en tal caso, de un movimiento decelerado.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández   

https://www.caja-pdf.es/2013/10/14/lectura-obligatoria-3-din/

14/10/2013 www.caja-pdf.es

maniobras tuina 98%

Página 1 Maniobras Tuina Fricción profunda lineal – Ca Fa Se realiza un movimiento de frotación lineal bidireccional y rápida sobre la piel del paciente.

https://www.caja-pdf.es/2014/03/02/maniobras-tuina/

02/03/2014 www.caja-pdf.es

la-tiranc3ada-de-la-falta-de-estructuras1 97%

Su activismo político empezó en los años 60, en el movimiento estudiantil de la Universidad de California, y luego en el movimiento de derechos civiles en San Francisco, participando en demostraciones en contra de las pruebas nucleares y en acciones piqueteras para obligar empresas que no contrataban afrodescendientes a cumpliren con derechos de trabajo.

https://www.caja-pdf.es/2016/02/17/la-tiranc3ada-de-la-falta-de-estructuras1/

17/02/2016 www.caja-pdf.es

Programa 97%

Este elemento permanecerá a lo largo de los restantes movimientos, a veces escondidos y otras, claramente reconocibles como ocurre en el comienzo del cuarto movimiento.

https://www.caja-pdf.es/2016/03/15/programa/

15/03/2016 www.caja-pdf.es

Programa Requiem 97%

Este elemento permanecerá a lo largo de los restantes movimientos, a veces escondidos y otras, claramente reconocibles como ocurre en el comienzo del cuarto movimiento.

https://www.caja-pdf.es/2016/03/15/programa-requiem/

15/03/2016 www.caja-pdf.es

Lectura Obligatoria 4 96%

“Aplicaciones de las leyes de Newton”     Rozamiento o Fricción: Cuando deslizamos un cuerpo sobre una superficie aparece una fuerza de  contacto que se opone a este movimiento, denominada fuerza de rozamiento. Lo mismo ocurre  en otras circunstancias, por ejemplo con el aire. Las fuerzas de rozamiento se dividen en dos  tipos, las estáticas y las dinámicas.    Fricción estática: La fuerza de rozamiento estática determina la fuerza mínima necesaria para  poner en movimiento un cuerpo. Si no hubiera rozamiento, una fuerza muy pequeña sobre un  cuerpo apoyado en el piso ya pondría a éste en movimiento. Sin embargo existe un valor mínimo  de fuerza a aplicar para que esto ocurra. Eso se debe a que existe una fuerza de rozamiento que  se opone al inicio del movimiento. La fuerza de rozamiento estática es del mismo valor (pero de  sentido contrario) que la fuerza que vayamos aplicamos para tratar de poner al cuerpo en  movimiento, mientras éste no se mueva, es decir que no tiene un valor constante.    Por ejemplo si un cuerpo se encuentra apoyado sobre una superficie horizontal en dónde no hay  más fuerzas además del peso y la normal, entonces no hay fuerza de rozamiento estático. Si  aplicamos una fuerza F1 y el cuerpo no se mueve, la fuerza de rozamiento es de valor – F1.     Si aplicamos F2 y no se mueve, en este caso la fuerza de rozamiento vale –F2.  Existe un valor de  fuerza de rozamiento estático máximo a partir del cual cualquier aumento en la fuerza aplicada  pone en movimiento al cuerpo. Se denomina fuerza de rozamiento estático máxima y depende  de la normal y de un número denominado coeficiente de rozamiento estático (μe).  Fre = ‐ F  Fre max = μe N    Fricción Dinámica: Una vez que el cuerpo comienza a moverse, igualmente hay una fuerza que se  opone al movimiento, llamada fuerza de rozamiento dinámico. La misma ya no depende de la  fuerza que se hace para mover al cuerpo sino exclusivamente de la normal y de otro número  llamado coeficiente de rozamiento dinámico (μd).  Fr = μd N    Fuerzas de arrastre de fluidos: En dinámica de fluidos, el arrastre o fricción de fluido es la fricción  entre un objeto sólido y el fluido (un líquido o gas) por el que se mueve. Para un sólido que se  mueve por un fluido o gas, el arrastre es la suma de todas las fuerzas aerodinámicas o  hidrodinámicas en la dirección del flujo del fluido externo. Por tanto, actúa opuestamente al  movimiento del objeto, y en un vehículo motorizado esto se resuelve con el empuje.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández 

https://www.caja-pdf.es/2013/10/20/lectura-obligatoria-4/

20/10/2013 www.caja-pdf.es

Lectura Obligatoria 5 (DIN) 91%

“Maquinas Simples”     Rueda La rueda es un operador formado por un cuerpo redondo que gira respecto de un punto  fijo denominado eje de giro. Normalmente la rueda siempre tiene que ir acompañada de un eje  cilíndrico (que guía su movimiento giratorio) y de un soporte (que mantiene al eje en su  posición). Aunque en la naturaleza también existen cuerpos redondeados (troncos de árbol,  cantos rodados, huevos...), ninguno de ellos cumple la función de la rueda en las máquinas, por  tanto se puede considerar que esta es una máquina totalmente artificial.  La parte operativa de la rueda es la periferia del disco, que se recubre con materiales o  terminaciones de diversos tipos con el fin de adaptarla a la utilidad correspondiente. Algunas de  las ruedas más empleadas son:  ‐ Rueda dentada, Rueda de transporte, Polea, Turbinas (rueda de palas).    Mecanismo de biela – manivela: Una manivela es una palanca que nos permite hacer girar  manualmente un dispositivo mecánico. Si le acoplamos una barra que pueda girar libremente en  sus dos extremos: la biela, obtenemos un mecanismo biela‐manivela. Este mecanismo permite  transformar el movimiento circular de la manivela en movimiento rectilíneo alternativo (la biela).  También funciona a la inversa: aplicando un movimiento rectilíneo alternativo a la biela podemos  conseguir que la manivela gire.    Cuña: La cuña es un prisma de base triangular, hecho de materia resistente que sirve para  introducirse en el interior de los cuerpos y cortarlos.  Es un instrumento muy generalizado:  cuchillos, navajas, hojas, tijeras se basan en la cuña. La ventaja mecánica (definida como la razón  entre la fuerza resistente y la fuerza aplicada) que aporta una cuña es directamente proporcional  a la longitud de la pendiente e inversamente proporcional a su ancho.    Palanca: Básicamente está constituida por una barra rígida, un punto de apoyo (se le puede  llamar “fulcro”) y dos fuerzas (mínimo) presentes: una fuerza (o resistencia) a la que hay que  vencer (normalmente es un peso a sostener o a levantar o a mover en general) y la fuerza (o  potencia) que se aplica para realizar la acción que se menciona. La distancia que hay entre el  punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo.  Así, a cada fuerza le corresponde un cierto brazo. Como en casi todos los casos de máquinas  simples, con la palanca se trata de vencer una resistencia, situada en un extremo de la barra,  aplicando una fuerza de valor más pequeño que se denomina potencia, en el otro extremo de la  barra. En una palanca podemos distinguir entonces los siguientes elementos:  ‐ El punto de apoyo o fulcro.  ‐ Potencia: la fuerza que se ha de aplicar.  ‐ Resistencia: el peso que se ha de mover.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2      Tipos de palancas:                        Ley de las palancas:  Desde el punto de vista matemático hay una ley muy importante, que antiguamente era  conocida como la “ley de oro”, nos referimos a la Ley de las Palancas:    El producto de la potencia por su brazo (F2 • b2) es igual al producto de la resistencia por el  brazo suyo (F1 • b1)  lo cual se escribe así:  F1 • b1 = F2 • b2  lo que significa que:  Trabajo motor = Trabajo resistente     Llamando F1 a la fuerza a vencer y F2 a la fuerza a aplicar y recordando que b1 es la distancia  entre el fulcro y la fuerza a vencer y b2 la distancia entre el fulcro y el lugar donde se ha de  aplicar la fuerza F2. En este caso se está considerando que las fuerzas son perpendiculares a los  brazos.    Plano inclinado: El plano inclinado es una superficie plana que forma con otra un ángulo muy  agudo (mucho menor de 90º). En la naturaleza aparece en forma de rampa, pero el ser humano  lo ha adaptado a sus necesidades haciéndolo móvil, como en el caso del hacha o del cuchillo.  Los cuerpos en caída por un plano inclinado sin rozamiento están sometidos a la  atracción de la  Tierra y experimentan un movimiento uniformemente acelerado. Esta aceleración aumenta con  la inclinación del plano. Su valor máximo es igual a la aceleración de la gravedad g = 9’8 m/s2   (Inclinación de 90º)    Polea: Son ruedas que tienen el perímetro exterior diseñado especialmente para facilitar el  contacto con cuerdas o correas. La polea es una máquina simple que nos puede ayudar a subir  pesos  ahorrando esfuerzo. Dependiendo del tipo de la misma: Simple fija, Simple móvil o  compuesta.    Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández     Tuerca husillo (tornillo sin fin): Es un mecanismo que convierte el movimiento de rotación en  movimiento lineal, y un par de torsión (fuerza de rotación) a una fuerza lineal. Es una de las seis  máquinas simples clásicos. La forma más común consiste en un eje cilíndrico como una rosca. El  husillo pasa a través de la tuerca que rosca en el husillo. Cuando el husillo gira avanza en una  proporción del paso de la rosca por vuelta de husillo.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández 

https://www.caja-pdf.es/2013/10/28/lectura-obligatoria-5-din/

28/10/2013 www.caja-pdf.es

Presentación del libro La voz de los Lonkos 91%

La devolución de tierras, ha sido la aspiración central desde la Ocupación de La Araucanía, como es posible verificarlo en los discursos e historia del primer ciclo del movimiento Mapuche contemporáneo;

https://www.caja-pdf.es/2013/11/02/presentacio-n-del-libro-la-voz-de-los-lonkos/

02/11/2013 www.caja-pdf.es

Lectura Obligatoria 2 (DIN) 91%

“Leyes de Newton”     1era Ley o de la Inercia: Según la PRIMERA LEY DE NEWTON, si no existen fuerzas externas que actúen  sobre un cuerpo, éste permanecerá en reposo o se moverá con una velocidad constante en línea recta.  El movimiento termina cuando fuerzas externas de fricción actúan sobre la superficie del cuerpo hasta  que se detiene. Por esta razón el movimiento de un objeto que resbala por una superficie de hielo dura  más tiempo que por una superficie de cemento, simplemente porque el hielo presenta menor fricción  que el cemento. Galileo expuso que si no existe fricción, el cuerpo continuará moviéndose a velocidad  constante, ya que ninguna fuerza afectará el movimiento. Cuando se presenta un cambio en el  movimiento de un cuerpo, éste presenta un nivel de resistencia denominado INERCIA. Si has ido en un  vehículo que ha frenado de improviso y tú has debido detenerte con tus propias manos, has  experimentado lo que es la inercia. Por tanto, a la primera ley de Newton también se le conoce como ley  de la inercia.    2ª Ley o de Fuerza: Determina que si se aplica una fuerza a un cuerpo, éste se acelera. La aceleración se  produce en la misma dirección que la fuerza aplicada y es inversamente proporcional a la masa del  cuerpo que se mueve. Recuerda que la fuerza y la aceleración son magnitudes vectoriales por lo que  tienen un valor, una dirección y un sentido. Si la masa de los cuerpos es constante, la fórmula que  expresa la segunda ley de Newton es: fuerza = masa x aceleración. En cambio cuando la masa del cuerpo  aumenta, la aceleración disminuye. Entonces, debes establecer la cantidad de movimiento (p) que  equivale al producto de la masa de un cuerpo por su velocidad. Es decir: p = m x v   FUERZA MASA en el  Sistema Internacional la cantidad de movimiento (p) se mide en Kg∙m/s porque la unidad para la masa es  el kilogramo y la unidad para la aceleración es metros por segundo. Por tanto: Fuerza (N) = masa (kg) x  aceleración (m/s2)    3era Ley o de Acción y Reacción: Postula que la fuerza que impulsa un cuerpo genera una fuerza igual  que va en sentido contrario. Es decir, si un cuerpo ejerce fuerza en otro cuerpo, el segundo cuerpo  produce una fuerza sobre el primero con igual magnitud y en dirección contraria. La fuerza siempre se  produce en pares iguales y opuestos. Por esta razón, a la tercera ley de Newton también se le conoce  como ley de acción y reacción.     Diagramas de cuerpo libre: Es una representación gráfica utilizada para analizar las fuerzas que actúan  sobre un cuerpo libre. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que  aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las  fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean  para el análisis de las fuerzas internas que actúan en estructuras. Todas las fuerzas externas se  representan mediante vectores etiquetados de forma adecuada. Las flechas indican la dirección y  magnitud de las fuerzas y, en la medida de lo posible, deberían situarse en el punto en que se aplican.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2     Solo se deben incluir las fuerzas que actúan sobre el objeto, ya sean de rozamiento, gravitatorias,  normales, de arrastre o de contacto. Cuando se trabaja con un sistema de referencia no inercial, es  apropiado incluir fuerzas ficticias como la centrífuga.    Equilibrio estático: Es una situación estacionaria en la que se cumplen una de estas dos condiciones:  (1) Un sistema está en equilibrio mecánico cuando la suma de fuerzas y momentos, sobre cada  partícula del sistema es cero.  (2) Un sistema está en equilibrio mecánico si su posición en el espacio de configuración es un punto  en el que el gradiente de energía potencial es cero.        Se distingue un tipo particular de equilibrio mecánico llamado equilibrio estático que correspondería  a una situación en que el cuerpo está en reposo, con velocidad cero: una hoja de papel sobre un  escritorio estará en equilibrio mecánico y estático, un paracaidista cayendo a velocidad constante,  dada por la velocidad estaría en equilibrio mecánico pero no estático.    CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada  sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada  fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas,  actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres  clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el  centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e  indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando  la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable  cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la  vertical del centro de gravedad pase siempre por ella.     Estabilidad del equilibrio de rotación. Ocurre cuando un cuerpo o sistema no gira con respecto a  algún punto, aunque exista una tendencia.    Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández   

https://www.caja-pdf.es/2013/10/05/lectura-obligatoria-2-din/

05/10/2013 www.caja-pdf.es

COntroles-Symax5UW V1.2 3 90%

N N E O E O S S PALANCA DERECHA Direcciones de movimiento del Dron y de la palanca derecha, aunque el dron este girado FOTO PIRUETA 360º VIDEO PULSACION CORTA DESPEGUE/ ATERRIZAJE 360º BOTONES de FUNCIONES (Foto, Video, Pirueta, Despegue, Aterrizaje)

https://www.caja-pdf.es/2017/05/21/controles-symax5uw-v1-2-3/

21/05/2017 www.caja-pdf.es

LA TEORIA POLITICA DEL GENERO. EL FEMINISMO 89%

Hasta el momento la esclavitud forma parte de la rutina cultural La abolición de la esclavitud va a llegar pero, para decepción de las mujeres, la igualdad de raza no se extiende a la igualdad de género, de modo que el movimiento feminista va a tener que buscar un camino propio, separándose del movimiento abolicionista.

https://www.caja-pdf.es/2015/02/22/la-teoria-politica-del-genero-el-feminismo/

22/02/2015 www.caja-pdf.es

Lectura Obligatoria 6 (DIN) 88%

“Trabajo, Energı́a y Potencia.”     Trabajo: Cuando tratamos de arrastrar un carro con una cuerda y no pasa nada, estamos  ejerciendo una fuerza y, sin embargo, el carro no ha realizado desplazamiento alguno. Por otra  parte, si incrementamos en forma continua esta fuerza, llegará un momento en el que el carro se  desplazará. En este caso, hemos obtenido algo por nuestro esfuerzo, y se denomina: TRABAJO.   Para que exista trabajo han de cumplirse 3 requisitos:  ‐ Debe haber una fuerza aplicada  ‐ La fuerza debe actuar a través de cierta distancia llamada: DESPLAZAMIENTO  ‐ La fuerza debe tener una componente a lo largo de su desplazamiento.  Trabajo es una cantidad escalar igual al producto de las magnitudes del desplazamiento y de la  componente de la fuerza en la dirección del desplazamiento y su unidad son los Joules (julios).    Trabajo resultante: Cuando consideramos el trabajo de varias fuerzas que actúan sobre un  mismo objeto es útil distinguir entre trabajo positivo y trabajo negativo. Por convención diremos  que, el trabajo de una fuerza concreta es positivo si la componente de la fuerza de halla en la  misma dirección de desplazamiento, ahora bien el trabajo negativo lo realiza una componente de  fuerza que se opone al desplazamiento real.   Si varias fuerzas actúan sobre un cuerpo en movimiento, el TRABAJO RESULTANTE es la suma  algebraica de los trabajos de las fuerzas individuales.     Energía: Se define como aquella capacidad que posee un cuerpo (una masa) para  realizar trabajo  luego de ser sometido a una fuerza; es decir, el trabajo no se puede realizar sin energía. Esta  capacidad (la energía) puede estar dada por la posición de un cuerpo o por la velocidad del  mismo; es por esto que podemos distinguir dos tipos de energía.    Energía Potencial: Todo cuerpo que se ubicado a cierta altura del suelo posee energía potencial.  Esta afirmación se comprueba cuando un objeto cae al suelo, siendo capaz de mover o deformar  objetos que se encuentren a su paso. El movimiento o deformación será tanto mayor cuanto  mayor sea la altura desde la cual cae el objeto. Otra forma de energía potencial es la que está  almacenada en los alimentos, bajo la forma de energía química. Cuando estos alimentos son  procesados por nuestro organismo, liberan la energía que tenían almacenada.  Para una misma altura, la energía del cuerpo dependerá de su masa. Aplicando una fuerza, esta  energía puede ser transferida de un cuerpo a otro y aparecer como energía cinética o de  deformación. Sin embargo, mientras el cuerpo no descienda, la energía no se manifiesta: es  energía potencial. Todos los cuerpos tienen energía potencial que será tanto mayor cuanto  mayor sea su altura. Como la existencia de esta energía potencial se debe a la gravitación (fuerza  de gravedad), su nombre más completo es energía potencial gravitatoria.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2      Energía Cinética: Cuando un cuerpo está en movimiento posee energía cinética ya que al chocar  contra otro puede moverlo y, por lo tanto, producir un trabajo. Para que un cuerpo adquiera  energía cinética o de movimiento; es decir, para ponerlo en movimiento, es necesario aplicarle  una fuerza. Cuanto mayor sea el tiempo que esté actuando dicha fuerza, mayor será la velocidad  del cuerpo y, por lo tanto, su energía cinética será también mayor.    Ley de la conservación de la energía: No existe ni puede existir nada capaz de generar energía, no  existe ni puede existir nada capaz de hacer desaparecer la energía y por último si se observa que  la cantidad de energía varía, siempre será posible atribuir dicha variación a un intercambio de  energía con algún otro cuerpo o con el medio circundante.  La energía es la capacidad de los cuerpos o sistemas de cuerpos para efectuar un trabajo. Todo  sistema que pasa de un estado a otro produce fenómenos físicos o químicos que no son más que  manifestaciones de alguna transformación de la energía, pues esta puede presentarse en  diferentes formas: cinética, potencial, eléctrica, mecánica, química.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández   

https://www.caja-pdf.es/2013/11/04/lectura-obligatoria-6-din/

04/11/2013 www.caja-pdf.es

REGLAMENTO DE CALVA 88%

Movimiento de inercia.

https://www.caja-pdf.es/2013/07/21/reglamento-de-calva/

21/07/2013 www.caja-pdf.es

combate 88%

Reglamento Westeros NURPG – 0.0 2012 COMBATE puede usar Sigilo para no ser visto u oído, sacrificando velocidad de movimiento).

https://www.caja-pdf.es/2012/09/18/combate/

18/09/2012 www.caja-pdf.es

Diploma 2014-2015 86%

 Construcción de la etnicidad movimiento afro-latinoamericano.

https://www.caja-pdf.es/2014/01/21/diploma-2014-2015/

21/01/2014 www.caja-pdf.es

Diploma 2014-2015 86%

 Construcción de la etnicidad movimiento afro-latinoamericano.

https://www.caja-pdf.es/2014/03/19/diploma-2014-2015/

19/03/2014 www.caja-pdf.es

problemas-resueltos-cap-6-fisica-serway 85%

PROBLEMAS RESUELTOS MOVIMIENTO CIRCULAR Y OTRAS APLICACIONES DE LAS LEYES DE NEWTON CAPITULO 6 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A.

https://www.caja-pdf.es/2016/04/05/problemas-resueltos-cap-6-fisica-serway/

05/04/2016 www.caja-pdf.es

Contenidos Tema 4 Sistemas hidráulicos 85%

La hidrostática trata sobre las leyes que rigen a los fluidos en reposo, mientras que la hidrodinámica trata sobre las leyes que rigen sobre los fluidos en movimiento, englobándose ambos vocablos dentro de la mecánica de fluidos.

https://www.caja-pdf.es/2016/04/06/contenidos-tema-4-sistemas-hidr-ulicos/

06/04/2016 www.caja-pdf.es

combate 84%

Reglamento Westeros NURPG – 0.0 2012 eCOMBATE puede usar Sigilo para no ser visto u oído, sacrificando velocidad de movimiento).

https://www.caja-pdf.es/2012/09/19/combate/

19/09/2012 www.caja-pdf.es

DOCUMENTO FINAL DEL ENCUENTRO NAICONAL DE PROCESOS NACIONALES D EREPARACION COLECTIVA 84%

Una propuesta de desarrollo incluyente que recoja las agendas del movimiento campesino, su identidad y sus derechos, es fundamental para este objetivo.

https://www.caja-pdf.es/2016/04/16/documento-final-del-encuentro-naiconal-de-procesos-nacionales-d-ereparacion-colectiva/

16/04/2016 www.caja-pdf.es

Prog Animación Dig 14P 84%

3.- Movimiento de la cámara.

https://www.caja-pdf.es/2014/04/27/prog-animaci-n-dig-14p/

27/04/2014 www.caja-pdf.es

REFLEXIONES SOBRE EL TAMAÑO DE LOS ANIMALES TERRESTRES 84%

Las capas interiores, el Manto de unos 3000 Km de espesor, se mantiene caliente y la mayor parte siguen semilíquidas debido por una parte al calor residual de formación inicial que no puede escapar al espacio y por el rozamiento del movimiento que le imprime el Núcleo.

https://www.caja-pdf.es/2017/05/15/reflexiones-sobre-el-tama-o-de-los-animales-terrestres/

15/05/2017 www.caja-pdf.es

Boletin askt 29 83%

De los katas aprendemos los principios del movimiento del cuerpo y del combate.

https://www.caja-pdf.es/2012/08/29/boletin-askt-29/

29/08/2012 www.caja-pdf.es

Boletin askt 29 83%

De los katas aprendemos los principios del movimiento del cuerpo y del combate.

https://www.caja-pdf.es/2012/08/29/boletin-askt-29-1/

29/08/2012 www.caja-pdf.es

Lectura Obligatoria 1 (ES) 83%

“Conceptos generales de Está tica”    Definición Mecánica y estática: La Mecánica es la rama de la física que describe el movimiento de los  cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. En particular, la estática estudia las  condiciones de equilibrio.  Otra definición, (que si lo notas es “algo” parecida) : La mecánica es una teoría científica que estudia  el movimiento de los cuerpos y sus causas, o bien el equilibrio, es decir, la falta de movimiento  (estática).  Magnitud Física: toda aquella propiedad física que puede ser medida (Medir es comparar una  magnitud con otra que se tiene como patrón), es decir, expresada mediante un número y una unidad  de medición. Las magnitudes pueden ser fundamentales o derivadas:   Fundamentales o Base: longitud: metro (m); masa: kilogramo (kg); tiempo: segundo (s); corriente  eléctrica: ampere (A); temperatura termodinámica: kelvin (K); intensidad luminosa: candela (cd);  cantidad de sustancia: mol (mol).  Derivadas: superficie: metro cuadrado (m2); volumen: metro cúbico (m3); velocidad: metro por segundo  (m/s); aceleración: metro por segundo al cuadrado (m/s2); número de ondas: metro a la menos uno (m‐ 1); densidad: kilogramo por metro cúbico (kg/m3); volumen específico: metro cúbico por kilogramo  (m3/kg); densidad de corriente: ampere por metro cuadrado (A/m2); campo magnético: ampere por  metro (A/m): concentración (de cantidad de sustancia) mol por metro cúbico (mol/m3); luminancia  candela por metro cuadrado (cd/m2); Índice de refracción (el número) uno 1.    El Sistema Internacional de Medidas (SI): Después de la Revolución Francesa los estudios para  determinar un sistema de unidades único y universal concluyeron con el establecimiento del Sistema  Métrico Decimal. La adopción universal de este sistema se hizo con el Tratado del Metro o la  Convención del Metro, que se firmó en Francia el 20 de mayo de 1875, y en el cual se establece la  creación de una organización científica que tuviera, por una parte, una estructura permanente que  permitiera a los países miembros tener una acción común sobre todas las cuestiones que se  relacionen con las unidades de medida y que asegure la unificación mundial de las mediciones físicas.  El Sistema Inglés de unidades: Unidades no‐métricas que se utilizan actualmente en los Estados  Unidos y en muchos territorios de habla inglesa (como en el Reino Unido), pero existen discrepancias  entre los sistemas de Estados Unidos e Inglaterra. Este sistema se deriva de la evolución de las  unidades locales a través de los siglos, y de los intentos de estandarización en Inglaterra. Las  unidades mismas tienen sus orígenes en la antigua Roma. Hoy en día, estas unidades están siendo  lentamente reemplazadas por el Sistema Internacional de Unidades. Debido a la intensa relación  comercial que tiene nuestro país con los EUA, existen aún en México muchos productos fabricados  con especificaciones en este sistema. Ejemplos de ello son los productos de madera, tornillería,  cables conductores y perfiles metálicos. Algunos instrumentos como los medidores de presión para  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández  2          neumáticos automotrices y otros tipos de manómetros frecuentemente emplean escalas en el  sistema inglés.  Cuerpo Rígido: Aquel que no sufre deformaciones por efecto de fuerzas externas, es decir un sistema  de partículas cuyas posiciones relativas no cambian. Sin embargo, las estructuras y máquinas reales  nunca son absolutamente rígidas y se deforman bajo la acción de cargas que actúan sobre ellas. Un  cuerpo rígido es una idealización, que se emplea para efectos de estudios de Mecánica.  Fuerza: Es una magnitud que mide la intensidad del intercambio de momento lineal entre dos  partículas o sistemas de partículas. Según una definición clásica, fuerza es todo agente capaz de  modificar la cantidad de movimiento o la forma de los materiales. No debe confundirse con los  conceptos de esfuerzo o de energía.  Vector: tiene magnitud o tamaño, dirección u orientación y sentido positivo (+) o negativo (‐) y punto  de aplicación, magnitud y dirección. (Ejemplos 100 N a 45° al norte del este.)  Cantidades escalares y vectoriales: Escalares son las cantidades físicas que tienen magnitud pero no  tienen dirección como: el volumen, la masa y se representan solo por medio de números o escalas. Y  estas se suman algebraicamente, (1kg + 1kg = 2kg). Vectoriales: su representación matemática es por  medio de vectores, y estas se suman geométricamente, aplicando (por ejemplo) el teorema de  Pitágoras; la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos.  Clasificación geométrica de los sistemas de fuerza: Desde un punto de vista geométrico, las fuerzas  se dividen en coplanares y no coplanares, y estas a su vez pueden ser concurrentes y no  concurrentes, así como paralelas o no paralelas.  Gravedad: Es la fuerza con que todos los cuerpos son atraídos hacia el centro de la Tierra. Es la fuerza  que mantiene todas las cosas pegadas al suelo. Según los resultados de un experimento de Galileo,  todos los cuerpos caen con la misma aceleración independiente de sus masas. En la superficie de la  Tierra, la aceleración originada por la gravedad es 9.81 m/s2, aproximadamente.  Lectura OBLIGATORIA para el apoyo de física aplicada al Diseño Industrial Septiembre de 2013. Prof. D.I. Diemel Hernández   

https://www.caja-pdf.es/2013/09/26/lectura-obligatoria-1-es/

26/09/2013 www.caja-pdf.es