Caja PDF

Comparta fácilmente sus documentos PDF con sus contactos, la web y las redes sociales.

Compartir un archivo PDF Gestor de archivos Caja de instrumento Buscar PDF Ayuda Contáctenos

Paviolo et al 2009 Protection affect puma abundance and activity pattern.pdf

Vista previa del archivo PDF paviolo-et-al-2009-protection-affect-puma-abundance-and-activity-pattern.pdf

Página 1 2 3 4 5 6 7 8 9

Vista previa de texto

August 2009


Bitetti et al. 2008b; Paviolo 2002). Therefore, variation in
protection efforts against poaching and logging may affect the
abundance and behavior of the primary prey species of pumas,
and in turn puma abundance and behavior.
Kelly et al. (2008) found that the density of pumas is very
low at Yabotı´ Biosphere Reserve in the Green Corridor,
suggesting that it may be related to the high poaching pressure
and intense logging activity suffered in the area. However,
their study compared densities among areas located in
different regions (Argentina, Bolivia, and Belize) where
factors other than poaching may affect the abundance of
pumas. The Green Corridor presents a variety of forest areas in
different states of conservation, providing an ideal situation to
test the hypothesis that human activities, such as poaching and
logging, negatively affect the abundance of pumas.
In the Atlantic Forest, pumas are often in conflict with
humans because they prey on domestic cattle (Conforti and
Azevedo 2003; Mazzolli et al. 2002) or are potentially
dangerous to humans, as was sadly confirmed by a fatal
puma attack on a child at the visitor’s area of Iguazu´ National
Park in 1997. Information on patterns of puma abundance and
activity might help to mitigate conflicts with humans, and to
establish a baseline for the elaboration of conservation
strategies for this species (Cougar Management Guidelines
Working Group 2005).
The goal of this study was to compare the abundance and
activity patterns of pumas in areas under different management and degradation conditions within the Green Corridor
and assess the effect of these management practices on the
ecology and behavior of the species.

Study area.—We carried out this study in 3 areas of the
Green Corridor. This region is characterized by a semideciduous subtropical forest with no discernible dry season
(Cabrera and Willink 1980). Average temperatures are around
22uC and 17uC during the warmest and the coldest months,
respectively. Average annual precipitation is around
2,000 mm with 2 peaks in the spring and autumn (Crespo
One of the study sites was in Yabotı´ Biosphere Reserve
(2,600 km2; 27uS, 54uW). The surveyed area included part of
Esmeralda Provincial Park (300 km2; logged until 1990) and
several private properties. At the time of the study, these
private properties were being intensely exploited by logging
companies with the exception of Miot’s property, where
logging was less intense (Di Bitetti et al. 2008a). Some of the
results of the survey conducted at Yabotı´ Biosphere Reserve
were presented by Kelly et al. (2008).
Another surveyed area was Urugua-ı´ (25u589S, 54u069W).
This area included Urugua-ı´ Wildlife Reserve (32 km2), part
of Urugua-ı´ Provincial Park (840 km2), and Campo de los
Palmitos (300 km2), a property belonging to a logging
company. The area was subject to selective timber extraction
until 1990.


The Iguazu´ area (25u409S, 54u309W) was surveyed twice,
1st in 2004 and again between 2006 and 2007. During the 1st
survey we covered the central area of Iguazu´ National Park
(670 km2) of Argentina. This park was subjected to selective
logging until 1934 (Dimitri 1974). During the 2nd survey we
expanded the study area, adding the western portion of Iguazu´
National Park, San Jorge Forest Reserve (174 km2), and the
western area of Iguac¸u National Park of Brazil (1,850 km2).
Iguac¸u´ National Park of Brazil was selectively logged until the
decade of 1930 and the San Jorge Reserve until the end of the
1980s. A map of the study areas and surveys can be found in
Paviolo et al. (2008).
Measurement of poaching intensity.—Hunting is an illegal
activity in Misiones; therefore, we used indirect evidence to
assess its intensity. We collected information on the evidence
of poaching activities during our fieldwork. We recorded
encounters with armed poachers or dogs, photographic records
of dogs or people, hunting campsites, artificial salt licks,
poaching platforms, gunshots heard, hunting trails, spent
shotgun cartridges, and camera-trap stations robbed or
destroyed. A detailed list of evidence of poaching intensity
in the study areas can be found in Paviolo et al. (2008) and Di
Bitetti et al. (2008b).
Poaching pressure was variable among the areas and
depended mostly on the effort dedicated to controlling it and
on the accessibility to different areas by poachers (Paviolo et
al. 2008). Yabotı´ Biosphere Reserve suffered very high
poaching pressure, although the pressure in Esmeralda
Provincial Park and Miot’s property was lower than in the
rest of the surveyed area (Di Bitetti et al. 2008a; Paviolo et al.
2008). The Urugua-ı´ area suffered a medium to high poaching
pressure (Paviolo et al. 2008). Iguazu´ National Park suffered
the lowest poaching pressure in the central area where we
conducted the 1st survey (2004) but an intermediate poaching
pressure in the areas added in the 2006–2007 survey (Paviolo
et al. 2008).
Camera-trapping surveys.—We used records obtained by
camera traps in combination with closed capture–mark–
recapture population models to estimate animal densities
(Karanth 1995; Karanth and Nichols 2002). Individuals were
identified in the photographs by distinct pelage markings
(Karanth 1995; Silver et al. 2004; Trolle and Kery 2003).
Recently, Kelly et al. (2008) demonstrated that it is possible to
identify individual pumas using photographs, which allows the
estimation of the density of this species using this methodology if applied with caution and following certain protocols
to evaluate the degree of confidence in the results.
Between 2003 and 2007, we conducted 4 surveys to
estimate the absolute density of jaguars, pumas, and ocelots in
different areas of the Green Corridor. At each study site, we
placed between 34 and 47 sampling stations (Table 1). Each
sampling station consisted of a pair of camera traps facing
each other and operating independently. The stations were
located on infrequently used dirt roads or small trails opened
in the forest and were distributed at regular intervals with the
purpose of evenly covering the entire surveyed area. We used